

Research Internship – Kerckhoffs Institute

© A.L.G.M. Wetzels, W. Bokslag 2015

Sponges and Engines
An introduction to Keccak and Keyak

Jos Wetzels, Wouter Bokslag

a.l.g.m.wetzels@student.utwente.nl

w.bokslag@student.tue.nl

Abstract. In this document we present an introductory overview of the algo-

rithms and design components underlying the Keccac cryptographic primitive

and the Keyak encryption scheme for authenticated (session-supporting) en-

cryption. This document aims to familiarize readers with the basic principles of

authenticated encryption, the Sponge and Duplex constructions (full-state,

keyed as well as regular versions), the permutation functions underlying Keccak

and Keyak as well as Keyak v2’s Motorist mode of operation.

Keywords: Keccak, Keyak, SHA-3, CAESAR competition, Authenticated En-

cryption, Sponge Constructions, Permutation-based Cryptography

1 Introduction

This document presents an overview of the algorithms and design components under-

lying the Keccac [18] cryptographic primitive (a subset of which has been standard-

ized by NIST as the SHA-3 cryptographic hash function [19]) and the Keyak v2 [24]

(hereafter referred to simply as Keyak) encryption scheme for authenticated (session-

supporting) encryption.

The goal of this document is to provide readers with an overview of the goals and

need for Authenticated Encryption, especially within the context of the CAESAR

competition [16], and the permutations and constructions underlying the Keccak and

Keyak families. This document does not seek to compile a state-of-the-art overview of

either permutation-based encryption or Sponge (and related) constructions nor does it

present original research or seek to improve upon the current state-of-the-art. Nor is

this document intended to be an implementation reference and as such implementers

are referred to the original specification documents for Keccak [18] and Keyak [24].

Instead it seeks to gather and present available documentation on these matters in a

single, accessible introductory document (omitting design considerations and justifi-

cations, security proofs and formalizations for the sake of brevity and clarity) aimed

at students and industry professionals.

mailto:a.l.g.m.wetzels@student.utwente.nl
mailto:w.bokslag@student.tue.nl

2 Authenticated Encryption

Authenticated Encryption (AE) or Authenticated Encryption with Associated Data

(AEAD) is a cryptographic mode of operation [1] providing confidentiality, integrity

and authenticity assurances on data where decryption is combined in single step with

integrity validation. Data authentication is of importance in scenarios where a Man-

in-the-Middle (MitM) attacker can make arbitrary modifications to the senders’ ci-

phertext before it is received by the recipient. This can lead to a whole host of prob-

lems ranging from (in the simplest case) data corruption to bit-flipping attacks [2] and

padding oracle attacks [3]. Cryptographic schemes which only guarantee confidential-

ity are at risk of such attacks [4].

There are two categories of modes of operation providing confidentiality and authen-

ticity: AE and AEAD. The difference between the two is that the latter allows for the

authentication of data separate from the plaintext (known as Additional Authenticated

Data (AAD)) which does not require confidentiality and is only authenticated and not

encrypted. This serves to prevent modifications to metadata (eg. ip address and port in

network data or e-mail headers in email data) by a MitM attacker. In this document

when we refer to AE we refer to both categories unless explicitly stated otherwise.

The need for AE arose out of observations that combining block cipher confidentiality

modes with block cipher authentication modes proved easy to get wrong in practice

[5]. Combining secure ciphers with secure MACs could still result in insecure authen-

ticated encryption schemes as shown by practical attacks against eg. SSL/TLS [6,7].

An example AE mode API would look as follows:

(𝑐, 𝑎) = Encrypt(𝑝, 𝑘, optional ℎ)
𝑝′ = Decrypt(𝑐, 𝑘, 𝑎, optional ℎ)

For ciphertext 𝑐, authentication tag 𝑎, plaintext 𝑝, secret key 𝑘, optional header ℎ and

decrypted ciphertext 𝑝′.

The optional header is the Additional Authenticated Data (AAD) discussed above.

The authentication tag consists of a Message Authentication Code (MAC). Decryp-

tion outputs either the plaintext or an error if the provided authentication tag does not

match the provided ciphertext or optional header.

AE comes in the form of either specialized block cipher modes of operation (eg.

OCB, EAX, CCM, GCM, etc.) [8] or a general construction (not limited to block

ciphers) combining an encryption scheme and a MAC provided that the encryption

scheme is secure under a Chosen Plaintext Attack (CPA) and the MAC is unforgeable

under a Chosen Message Attack (CMA). Three widespread compositions of these

primitives are listed by Krawczyk [9] as follows:

 Encrypt-then-Authenticate (EtA): Here the plaintext is first encrypted after

which a MAC of the ciphertext is generated as the authentication tag. The

result is the pair (𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡, 𝑡𝑎𝑔 = 𝑀𝐴𝐶(𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡).

Fig. 1: Encrypt-then-Authenticate [10]

 Encrypt-and-Authenticate (AaM): Here a MAC of the plaintext is produced

and the plaintext is encrypted separately resulting in the pair

(𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡, 𝑡𝑎𝑔 = 𝑀𝐴𝐶(𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡)).

Fig. 2: Encrypt-and-Authenticate [10]

 Authenticate-then-Encrypt (AtE): Here a MAC of the plaintext is generated

and concatenated with the plaintext with the result being encrypted resulting

in (𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 = 𝐸(𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡|𝑀𝐴𝐶(𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡), 𝐾).

Fig. 3: Authenticate-then-Encrypt [10]

Note that in the above figures 1 to 3 the same key is used for encryption and authenti-

cation while it is recommended [11] to use two different secret keys for these differ-

ent purposes.

The Encrypt-then-Authenticate approach has been shown [9] to be secure (provided

the underlying primitives meet the appropriate security requirements). While Encrypt-

and-Authenticate and Authenticate-then-Encrypt have not been shown to be secure by

themselves some implementations have been shown to be secure. On the other hand

while Krawczyk initially reported the AtE scheme used in SSL/TLS to be secure he

revised his results [12] and it was found that using SSL/TLS with a block cipher in

CBC mode was insecure due to the way in which the plaintext was encoded and pad-

ded [13].

Given these implementation troubles NIST specified [14,15] two block cipher modes

of operation (namely CCM and GCM) offering AE functionality (or rather, AEAD

functionality to be more precise). It is important to note that when using randomized

IVs appended to the ciphertext one should authenticate the (𝐼𝑉, 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡) pair.

2.1 CAESAR

CAESAR [16] (Competition for Authenticated Encryption: Security, Applicability,

and Robustness) is a project to “identify a portfolio of authenticated ciphers that (1)

offer advantages over AES-GCM and (2) are suitable for widespread adoption”.

CAESAR submissions specify a family of (one or more) authenticated ciphers the

members of which may vary in external parameters.

CAESAR submissions follow an API specification consisting of:

𝑐 = Encrypt(𝑝, 𝑘, optional 𝑑, optional 𝑚𝑛𝑠, optional 𝑚𝑛𝑝)

For ciphertext 𝑐, plaintext 𝑝, secret key 𝑘, optional associated data 𝑑, optional secret

message number 𝑚𝑛𝑠 and optional public message number 𝑚𝑛𝑝.

See figure 4 for the different security purposes and restrictions of the inputs.

 Integrity Confidentiality Length Optional May impose

single-use

requirements

Plaintext Yes Yes Variable No No

Associated

Data

Yes No Variable Yes No

Secret

Message

Number

Yes Yes Fixed Yes Yes

Public

Message

Number

Yes No Fixed Yes Yes

Key N/A N/A Fixed No N/A

Fig. 4: Security purposes and restrictions of inputs [17]

CAESAR submission ciphers are expected to maintain security regardless of the us-

er’s choice of message numbers with the exception of reuse of a single

(𝑠𝑒𝑐𝑟𝑒𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑝𝑢𝑏𝑙𝑖𝑐 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟) pair for two encryptions with

the same key.

3 Keccak

Keccak [18] is a family of sponge functions (see section 3.1) a subset of which has

been standardized by NIST as the SHA-3 cryptographic hash function [19]. Keccak

uses one of seven permutations denoted as 𝐾𝑒𝑐𝑐𝑎𝑘𝑓[𝑏] (where permutation width

b ∈ {25,50,100,200,400,800,1600}) as primitive in the sponge construction, with

𝐾𝑒𝑐𝑐𝑎𝑘𝑓[1600] being the permutation of choice for SHA-3.

Each of these permutations consists of the iterative application of a simple round

function (similar to block ciphers but without key scheduling) with operations limited

to bitwise XOR, AND, NOT and rotations.

The description in this section draws upon those outlined in [18,22,23].

3.1 The Sponge Construction

A sponge construction or sponge function [20] is a type of algorithm with a finite

internal state consuming an arbitrary-length input bitstream and producing an output

bitstream of an arbitrary desired length. Sponge functions can serve to implement

various cryptographic primitives such as cryptographic hash functions, MACs, stream

ciphers, PRNGs and AE schemes due to its arbitrarily long input and output sizes.

Sponge constructions are iterated constructions operating on an internal state 𝑆 of

width 𝑏 bits (where 𝑏 = (𝑟 + 𝑐) with 𝑟 denoting the bitrate and 𝑐 denoting the capac-

ity) by applying the fixed-length permutation function 𝑓 to it as illustrated in figure 5.

Fig. 5: Sponge construction [20]

The sponge function starts by padding the input string to a length that is a multiple of

𝑟 using a reversible padding rule before cutting it into 𝑛 blocks of 𝑟 bits. Next 𝑏 bits

of state 𝑆 are initialized to zero and the sponge construction proceeds in two phases:

 Absorbing: In the absorbing phase every 𝑟-bit input block is XORed into the

first 𝑟 bits of the state 𝑆 followed by application of the permutation function

𝑓 to 𝑆 resulting in a new state 𝑆′. After all input blocks have been processed

in this fashion (ie. the padded input has been fully absorbed) the sponge con-

struction switches to the squeezing phase.

 Squeezing: In the squeezing phase the user chooses the number of 𝑟-bit sized

output blocks. For every block the first 𝑟 bits of the state 𝑆 are returned fol-

lowed by application of the permutation function 𝑓 to 𝑆.

Note that the last 𝑐 bits (the capacity) of the state are never directly affected by the

input blocks during the absorbing phase and are never output during the squeezing

phase.

An example sponge construction API would look as follows:

𝑍 = 𝑆𝑝𝑜𝑛𝑔𝑒[𝑓, 𝑝𝑎𝑑, 𝑟](𝑀, 𝑙)

For input message 𝑀 and requested output length 𝑙.

3.2 The 𝑲𝒆𝒄𝒄𝒂𝒌𝒇 permutation function

There are 7 𝐾𝑒𝑐𝑐𝑎𝑘𝑓 [18] permutation functions denoted as 𝐾𝑒𝑐𝑐𝑎𝑘𝑓[𝑏] where 𝑏 =

25 ∗ 2𝑙 and 0 ≤ 𝑙 ≤ 6, 𝑙 ∈ ℤ. One of the advantages of a permutation over traditional

usage of block ciphers is that there is no need for a key schedule nor for an inverse.

The 𝐾𝑒𝑐𝑐𝑎𝑘𝑓 function operates over an internal state 𝑆 which is represented as an

array of 5x5 lanes each of length 𝑤 = 2𝑙. The state can be divided in various parts

(depending on axis or axes along which we select our bits) each with their own name

as shown in figures 6a-c where the 𝑥 and 𝑦 axes represent a selection among the 5x5

lanes and the 𝑧 axis a 𝑤-bit sized lane.

Fig. 6a: 𝐾𝑒𝑐𝑐𝑎𝑘𝑓 full state [21]

Fig. 6b: 𝐾𝑒𝑐𝑐𝑎𝑘𝑓 state row, column and lane [21]

Fig. 6c: 𝐾𝑒𝑐𝑐𝑎𝑘𝑓 state plane, slice and sheet [21]

The 𝐾𝑒𝑐𝑐𝑎𝑘𝑓[𝑏] function consists of the iterated application of a round function with

the permutation-width dependent number of rounds 𝑛𝑟 given by 𝑛𝑟 = 12 + 2𝑙 where

𝑤 = 2𝑙 as illustrated in figure 7.

Fig. 7: 𝐾𝑒𝑐𝑐𝑎𝑘𝑓 permutation pseudo-code [22]

Keccak-f[b](S):

 for 𝑖 ∈ {0, . . , (𝑛𝑟 − 1)}:

 S = Round[b](S, 𝑅𝐶𝑖)

 Return S

The Keccak round function, as illustrated in figure 8, consists of the application of

five steps 𝜃, 𝜌, 𝜋, 𝜒, 𝜄 to the state 𝑆 and a round constant 𝑅𝐶𝑖 (where 𝑖 is the current

round index) as defined in the round constant table in figure 9.

Fig. 8: Round pseudo-code [22]

In figure 8 𝐴 denotes the complete permutation state array (with 𝐴[𝑥, 𝑦] denoting a

particular lane) whereas 𝐵[𝑥, 𝑦], 𝐶[𝑥] and 𝐷[𝑥] are intermediate variables. The con-

stants 𝑟[𝑥, 𝑦] are rotation offsets as listed in the table in figure 10. The 𝑟𝑜𝑡 operation

is a bitwise cyclic right-ward shift operation moving a bit at position 𝑖 to position

(𝑖 + 𝑟) 𝑚𝑜𝑑 𝑤.

Round[b](A, RC):

 //𝜃-step for bit diffusion

 for 𝑥 ∈ {0, . . ,4}:

 C[x] = A[x,0] xor A[x,1] xor A[x,2] xor A[x,3] xor A[x,4]

 for 𝑥 ∈ {0, . . ,4}:

 D[x] = C[x-1] xor rot(C[x+1], 1)

 for (𝑥, 𝑦) ∈ {{0, . . ,4}𝑥{0, . . ,4}}:

 A[x,y] = A[x,y] xor D[x]

 //𝜌-step for inter-slice diffusion and

 //𝜋-step for disturbing x,y alignment through lane-transposition

 for (𝑥, 𝑦) ∈ {{0, . . ,4}𝑥{0, . . ,4}}:

 B[y, 2x + 3y] = rot(A[x,y], r[x,y])

 //𝜒-step for non-linear mapping

 for (𝑥, 𝑦) ∈ {{0, . . ,4}𝑥{0, . . ,4}}:

 A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y])

 //𝜄-step to break symmetry

 A[0,0] = A[0,0] xor RC

 Return A

RC[0] 0x0000000000000001 RC[12] 0x000000008000808B

RC[1] 0x0000000000008082 RC[13] 0x800000000000008B

RC[2] 0x800000000000808A RC[14] 0x8000000000008089

RC[3] 0x8000000080008000 RC[15] 0x8000000000008003

RC[4] 0x000000000000808B RC[16] 0x8000000000008002

RC[5] 0x0000000080000001 RC[17] 0x8000000000000080

RC[6] 0x8000000080008081 RC[18] 0x000000000000800A

RC[7] 0x8000000000008009 RC[19] 0x800000008000000A

RC[8] 0x000000000000008A RC[20] 0x8000000080008081

RC[9] 0x0000000000000088 RC[21] 0x8000000000008080

RC[10] 0x0000000080008009 RC[22] 0x0000000080000001

RC[11] 0x000000008000000A RC[23] 0x8000000080008008

Fig. 9: Round Constant table [22]

Round Constants are given by 𝑅𝐶[𝑖][0,0,2𝑗 − 1] = 𝑟𝑐[𝑗 + 7𝑖] for 0 ≤ 𝑗 ≤ 𝑙 where 𝑖

is the round index and all other 𝑅𝐶[𝑖][𝑥, 𝑦, 𝑧] are zero. The values 𝑟𝑐[𝑡] ∈ GF(2) are

given by the LFSR 𝑟𝑐[𝑡] = (𝑥𝑡 mod 𝑥8 + 𝑥6 + 𝑥5 + 𝑥4 + 1) mod 𝑥 in GF(2)[𝑥]

with period 255.

 x=3 x=4 x=0 x=1 x=2

y=2 25 39 3 10 43

y=1 55 20 36 44 6

y=0 28 27 0 1 62

y=4 56 14 18 2 61

y=3 21 8 41 45 15

Fig. 10: Rotation Offset table [22]

3.3 Keccak’s pad10*1 Padding

The (reversible) padding rule used in Keccak [18] pads a message 𝑀 to a sequence of

𝑥-bit blocks and is denoted by 𝑀||𝑝𝑎𝑑[𝑥](|𝑀|). Keccak’s multi-rate padding, denot-

ed by pad10*1, appends a single bit 1 followed by the minimum number of bits 0

followed by a single bit 1 such that the length of the result is a multiple of the block-

length.

3.4 The Keccak Sponge Function

When combining the above documented functions into a sponge construction we ob-

tain the 𝐾𝑒𝑐𝑐𝑎𝑘[𝑟, 𝑐] sponge function (where 𝑟 denotes bitrate and 𝑐 denotes capaci-

ty) as illustrated in figure 11. Note that the pseudo-code in figure 11 is limited to

cases where the number of bits in a message 𝑀 is a multiple of 8 (ie. spans a whole

number of bytes) and 𝑟 is a multiple of the lane size (as is the case for the SHA-3

parameters [19]. In the pseudo-code 𝑆 denotes the state as an array of lanes with pad-

ded message 𝑃 organized as an array of blocks 𝑃𝑖 each of which is organized as an

array of lanes themselves.

Fig. 11: 𝐾𝑒𝑐𝑐𝑎𝑘[𝑟, 𝑐] sponge function pseudo-code [22]

Keccak[r,c](M):

 //Initialization and padding

 for (𝑥, 𝑦) ∈ {{0, . . ,4}𝑥{0, . . ,4}}:

 S[x,y] = 0

 P = M || 0x01 || 0x00 || … || 0x00

 P = P xor (0x00 || … || 0x00 || 0x80)

 //Absorbing phase

 for 𝑃𝑖 ∈ 𝑃:

 for (𝑥, 𝑦) such that 𝑥 + 5 ∗ 𝑦 <
𝑟

𝑤
:

 S[x,y] = S[x,y] xor 𝑃𝑖[𝑥 + 5𝑦]
 S = Keccak-f[r+c](S)

 //Squeezing phase

 Z = empty string

 while (output is requested):

 for (𝑥, 𝑦) such that 𝑥 + 5 ∗ 𝑦 <
𝑟

𝑤
:

 Z = Z || S[x,y]

 S = Keccak-f[r+c](S)

 Return Z

4 Keyak

Keyak [24] is a permutation-based authenticated encryption scheme supporting ses-

sions submitted to the 2nd round of the CAESAR competition. In this document when

we mention Keyak we are referring to Keyak v2 unless explicitly stated otherwise.

Keyak operates in the so-called Motorist mode (see section 4.2) and uses 𝐾𝑒𝑐𝑐𝑎𝑘-𝑝

(see section 4.3) as the underlying permutation and is free of inverses [29]. Keyak

offers features such as in-place encryption, parallelizable encryption/decryption, in-

cremental AEAD [29] simultaneous processing of plaintext and associated data, ses-

sion support, intermediate authentication tags and the option to combine wrapping

and unwrapping in the same session where upon unwrapping the plaintext is made

available only if the tag is valid. Keyak consists of five named instances: River Keyak,

Lake Keyak, Sea Keyak, Ocean Keyak and Lunar Keyak taking on specific parameter

values as detailed in section 4.7.

The material in this section draws upon that outlined in [20, 24, 25, 26, 27, 28].

4.1 The Duplex Construction

A duplex construction [20] is a construction closely related to the sponge construction

with an equivalent level of security. The duplex construction allows for the alternation

of input and output blocks (as shown in figure 12) at the same rate as the sponge con-

struction, analogous to full-duplex communication, which allows for efficient imple-

mentations of reseedable PRNGs and AE schemes requiring only one call to the per-

mutation function 𝑓 per input block.

Fig. 12: Duplex construction [20]

The duplex construction, like the sponge construction, starts by padding the input

string to a length that is a multiple of 𝑟 using a reversible padding rule before cutting

it into 𝑛 blocks of 𝑟 bits. Next 𝑏 bits of state 𝑆 are initialized to zero. Unlike the

sponge construction, which is stateless in between calls, the duplex construction re-

sults in an object which accepts calls taking an input string and returning an output

string which depends on all input received so far. Such an object, called a duplex

object, is denoted as 𝐷.

A duplex object 𝐷 has a 𝑏-bit internal state 𝑆 which is set to zero upon initialization.

From then one can make calls to 𝐷. 𝑑𝑢𝑝𝑙𝑒𝑥𝑖𝑛𝑔(𝜎, 𝑙) (where 𝜎 denotes an input string

and 𝑙 denotes the requested number of bits) where the maximum number of bits one

can request is the bitrate 𝑟 and the input string 𝜎 has to be short enough such that after

padding it results in a single 𝑟-bit block. This maximum length of 𝜎 is called the max-

imum duplex rate and denoted as 𝜌𝑚𝑎𝑥(𝑝𝑎𝑑, 𝑟) and is always smaller than the bitrate

𝑟.

Executing a 𝐷. 𝑑𝑢𝑝𝑙𝑒𝑥𝑖𝑛𝑔(𝜎, 𝑙) call will have the duplex object pad the input string 𝜎

and XOR it to the first 𝑟 bits of the internal state 𝑆 after which it applies permutation

function 𝑓 to the state and returns the first 𝑙 bits of the state as output. Calls where 𝜎

is the empty string are referred to as blank calls while calls with 𝑙 = 0 are referred to

as mute calls.

An example duplex construction API would look as follows:

 Initialization: 𝐷 = 𝐷𝑢𝑝𝑙𝑒𝑥[𝑓, 𝑝𝑎𝑑, 𝑟]

 Duplexing calls: 𝐷. 𝑑𝑢𝑝𝑙𝑒𝑥𝑖𝑛𝑔(𝜎, 𝑙)

4.2 Keyed Sponge Constructions

Keyed sponge constructions can be divided in two categories:

 Outer-keyed Sponge constructions: Bertoni et al. [26] introduced the keyed

Sponge construction as an evaluation of the Sponge function over a concate-

nation of the key and the message, ie. 𝑆𝑝𝑜𝑛𝑔𝑒(𝐾||𝑀). This type of keyed

Sponge is denoted as outer-keyed.

 Inner-keyed Sponge constructions: Chan et al. [27] introduced the inner-

keyed Sponge construction which takes the regular sponge construction and

uses 𝐸𝐾
𝑓
 as the Sponge permutation. Here 𝑓 is a permutation, 𝐾 the key and

𝐸𝐾
𝑓

 the Even-Mansour construction [28] which builds a 𝑏-bit block cipher

from 𝑏-bit permutation using a 𝑏-bit key: 𝐸𝐾
𝑓

= 𝑓(𝑥 ⊕ 𝐾) ⊕ 𝐾.

4.3 Full-State Keyed and Duplex Sponge Constructions

In order to optimize the efficiency in Sponge-based authenticated encryption Mennink

et al. [25] formalized the Full-State Duplex Sponge (FDS) construction which differs

from the original duplex construction (see section 4.1) in that the key is explicitly

used to initialize the state (making it a keyed construction) and the absorption phase is

performed on the entire state which enforces explicit usage of the key. Mennink et al.

[25] proved the increase in input block length from bitrate 𝑟 to full-state permutation

width 𝑏 has no noticeable impact on the security of the generic construction while

allowing for the injection of more bits per call to the underlying permutation and thus

improving performance.

Note that in full-state keyed sponge constructions the usage of outer-keyed sponge

constructions makes no longer any security difference from the usage of inner-keyed

sponge constructions and both can be seen as special cases of the Full-State Keyed

Sponge (FKS) construction.

4.3.1 Full-State Keyed Sponge Constructions

The Full-State Keyed Sponge (FKS) constructions works by initializing the inner 𝑘

bits of the state 𝑆 to the key 𝐾 (where 𝑘 ≤ 𝑐) and the outer (𝑏 − 𝑘) bits to zero. The

message 𝑀 is padded to a bit-length that is a multiple of 𝑏 and absorbed in the usual

sponge fashion. After absorption the squeezing phase outputs the outer 𝑟 bits of state

𝑆 in the usual sponge fashion until the request amount of 𝑧 bits is output as illustrated

in figure 13.

Fig. 13: Full-State Keyed Sponge (FKS) construction [25]

4.3.2 Full-State Duplex Constructions

The Full-State Duplex Sponge (FDS) constructions works by initializing the inner 𝑘

bits of the state 𝑆 to the key 𝐾 (where 𝑘 ≤ 𝑐) and the outer (𝑏 − 𝑘) bits either zero (as

per figure 14a). In the Full-State Keyed Duplex (FSKD) construction outlined in [24]

and shown in figure 14b initialization consists of setting the inner 𝑘 bits of state 𝑆 to

key 𝐾 and the outer (𝑏 − 𝑘) bits to string 𝜎0 followed by application of the permuta-

tion 𝑓. Essentialy initialization of the latter is identical to initialization of the former

followed by a single duplexing call with (unpadded) 𝑀1 = 𝜎0. This results in duplex

object 𝐷 . Subsequent duplexing calls to 𝐷 can consume messages of up to 𝑏 bits

while outputting string 𝑍 as illustrated in figures 14a and 14b. Both constructions are

identical save for the slight difference in initialization.

Fig. 14a: Full-State Duplex Sponge (FDS) construction as per [25]

Fig. 14b: Full-State Keyed Duplex (FSKD) construction as per [24]

The operation of the Motorist mode can be expressed in calls to FSKD objects.

4.4 The Motorist mode

The Motorist mode is a construction supporting authenticated encryption of sequences

of messages in sessions and serves as a replacement for 𝐷𝑢𝑝𝑙𝑒𝑥𝑊𝑟𝑎𝑝 and

𝐾𝑒𝑦𝑎𝑘𝐿𝑖𝑛𝑒𝑠 used in Keyak v1. In a given session it processes messages and ‘crypto-

grams’ where a message consists of a plaintext and possible associated data (which

will be referred to as metadata from here on) and a cryptogram consists of a cipher-

text, possible metadata and an authentication tag. Messages can consist of metadata

alone and the corresponding cryptogram will not have any ciphertext.

 Wrapping: Each message is wrapped into a cryptogram by encrypting it into

a ciphertext and computing an authentication tag over the full sequence of

messages.

 Unwrapping: Each cryptograph is unwrapped by decrypting the ciphertext

into plaintext, verifying the authentication tag and returning the plaintext if

the tag is valid.

Within a session the tag of a given cryptogram authenticates the full sequence of mes-

sages sent/received since the start of that particular session. Starting a session requires

a secret key (and possibly a nonce if the secret key is not unique for this session).

4.4.1 Motorist’s Duplex Instances

The Motorist mode is sponge-based and supports one or more duplex instances, in the

form of so-called Pistons (see section 4.4.3.1) operating in parallel. It calls the du-

plexing function with input containing the key, nonce, plaintext and metadata bits and

uses the output as tag or key stream bits.

The Motorist duplex instances differ from the original duplex construction (see sec-

tion 4.1) in that they are full-state keyed duplex (FSKD) instances (see section 4.3.2)

and accept input blocks as large (after padding) as the permutation width instead of

only the bitrate width. The Motorist mode supports a parameterized degree of paral-

lelism in the form of an array of so-called Pistons (see section 4.4.3.1) each of which

is an FSKD object.

Motorist distributes the message (consisting of plaintext and metadata) over a set of

different Piston duplex instances. In order to produce an authentication tag that de-

pends on the full message and not only on the message bits supplied to a single du-

plex instance, Motorist performs dedicated processing (called a knot) at the end of

each message which extracts chaining values from each duplex instance and after

concatenating them injects them into all duplex instances resulting in the state of all

instances depend on the full sequence of messages. Finally it extracts an authentica-

tion tag from a single duplex object which authenticates the full message sequence

(ie. session).

4.4.2 Motorist’s Session Support

In order to start a session Motorist consumes a globally unique and secret string called

the Secret and Unique Value (SUV) consisting of a key and a nonce (with the recom-

mended order being the key coming first) which is injected into each duplex instance

followed by the appending of a diversification string to diversify their states. A single

Motorist session is sufficient for secure two-way communication but one must clearly

indicate for every message who is the sender which can be done by including the

sender’s identifier in the message metadata. An alternative approach would be relying

on a strict alternating convention. The SUV nonce requirement is not required for

Motorist sessions which perform unwrapping functionality only.

4.4.3 Motorist’s Layers

Motorist is specified in three layers each of which handle a different aspect of its

functionality each consuming input in terms of byte streams (that is, strings of bytes

that can be read from and written to in sequential fashion) where a sequence of con-

secutive bytes from a stream is called a fragment.

4.4.3.1 Piston Layer

The Piston layer is effectively an augmented full-state keyed duplex (FSKD) con-

struction that maintains a 𝑏-bit state 𝑆 and applies permutation 𝑓 to it and has further

parameters squeezing rate 𝑅𝑠 and absorbing rate 𝑅𝑎 where 𝑅𝑠 ≤ 𝑅𝑎. It handles basic

functionality such as data injection, simultaneous encryption or decryption (if so de-

sired), tag extraction and setting fragment offsets. The Piston state 𝑆 is initialized to

zero and 𝑠[𝑖] denotes byte 𝑖 of state 𝑆.

An example Piston API would look as follows:

𝑃𝑖𝑠𝑡𝑜𝑛[𝑓, 𝑅𝑠, 𝑅𝑎]

Where 𝑓 denotes the underlying permutation function, 𝑅𝑠 the squeeze rate and 𝑅𝑎 the

absorbing rate.

When properly used, ie. through an Engine (see section 4.4.3.2), the Piston constructs

a full-width input block from supplied plaintext, metadata and fragment offsets en-

coding as illustrated in figures 15a and 15b where either:

 The block starts with a possible number of leading zeros (starting at index 0),

followed by a plaintext fragment ending at index 𝑅𝑠, followed by a metadata

fragment ending at index 𝑅𝑎, followed by the fragment offsets.

 In the absence of plaintext metadata starts at index 0 and runs up to index

𝑅𝑎.

Fig. 15a,b: Piston full-width input blocks with (a) and without (b) plaintext

Piston input blocks have four fragment offsets:

 EOM: The EOM fragment offset functions both to denote the number of

bytes in the next output block to be used as tag and to delimit messages by

having a non-zero value if it is part of an input block that is the last of a mes-

sage or a string injected collectively. In case no tag is requested at the end of

such a collectively injected message or string it takes the value 255 (0xFF).

 Crypt End: The Crypt End fragment offset functions to denote the end of the

plaintext fragment within the current input block. The start of this plaintext

fragment is denoted by the EOM fragment offset of the previous input block

where a value of 255 (0xFF) means the plaintext fragment starts at index 0.

 Inject Start: The Inject Start fragment offset functions to denote the start of

the metadata fragment within the current input block. If there is also a

plaintext fragment within the current input block then the metadata fragment

starts at 𝐼𝑛𝑗𝑒𝑐𝑡 𝑆𝑡𝑎𝑟𝑡 = 𝑅𝑠 else it starts at 𝐼𝑛𝑗𝑒𝑐𝑡 𝑆𝑡𝑎𝑟𝑡 = 0.

 Inject End: The Inject End fragment offset functions to denote the end of the

metadata fragment within the current input block.

After the input block has been absorbed into the state and permutation function 𝑓 has

been applied the outer part of the state is used as follows:

 An arbitrary number of bytes used as tag, starting at index 0

 An arbitrary number of bytes used as keystream, starting after the possible

tag

The Piston has four functions (replacing the traditional single Duplexing function of a

Duplex object), illustrated in figures 16a-d, achieving the above functionality:

 𝑃𝑖𝑠𝑡𝑜𝑛. 𝐶𝑟𝑦𝑝𝑡(𝐼, 𝑂, 𝜔, 𝑢𝑛𝑤𝑟𝑎𝑝𝐹𝑙𝑎𝑔): This function, as illustrated in figure

16a, supports the combined encryption of plaintext (or decryption of cipher-

text) and absorbing of the corresponding ciphertext (or plaintext) into the

outer part of the state as long as input is available followed by updating the

end of the plaintext fragment in the appropriate fragment offset. The parame-

ters are as follows:

o 𝐼: Input bytestream (either plaintext or ciphertext)

o 𝑂: Output bytestream where result will be written to

o 𝜔: Index in the state from where the plaintext fragment must be in-

jected. The fragment will end at index 𝑅𝑠 or earlier (if input is ex-

hausted). The end of the plaintext fragment is set in offset

𝐶𝑟𝑦𝑝𝑡 𝐸𝑛𝑑.

o 𝑢𝑛𝑤𝑟𝑎𝑝𝐹𝑙𝑎𝑔: Indicates whether we are encrypting (False) or de-

crypting (True)

Fig. 16a: 𝑃𝑖𝑠𝑡𝑜𝑛. 𝐶𝑟𝑦𝑝𝑡() pseudo-code [24]

 𝑃𝑖𝑠𝑡𝑜𝑛. 𝐼𝑛𝑗𝑒𝑐𝑡(𝑋, 𝑐𝑟𝑦𝑝𝑡𝑖𝑛𝑔𝐹𝑙𝑎𝑔): This function, illustrated in figure 16b,

injects metadata taken from input bytestream 𝑋 starting from index 𝑅𝑠 if

𝑐𝑟𝑦𝑝𝑡𝑖𝑛𝑔𝐹𝑙𝑎𝑔 is set (indicating whether the current input block already has

a plaintext fragment) or from index 0 if it is not. The metadata fragment will

end at index 𝑅𝑎 or earlier (if input is exhausted). The start of the metadata

fragment is set in offset 𝐼𝑛𝑗𝑒𝑐𝑡 𝑆𝑡𝑎𝑟𝑡.

Fig. 16b: 𝑃𝑖𝑠𝑡𝑜𝑛. 𝐼𝑛𝑗𝑒𝑐𝑡() pseudo-code [24]

 𝑃𝑖𝑠𝑡𝑜𝑛. 𝑆𝑝𝑎𝑟𝑘(𝑒𝑜𝑚𝐹𝑙𝑎𝑔, 𝑙): This function, as illustrated in figure 16c, ap-

plies the underlying permutation 𝑓 to the state 𝑆. Before doing so it sets in

the 𝐸𝑂𝑀 fragment offset whether this is the last input block of a message (or

of a string collectively injected) as indicated by 𝑒𝑜𝑚𝐹𝑙𝑎𝑔. If this is the case

𝐸𝑂𝑀 is set to the number 𝑙 of bytes of the state 𝑆 (after application of 𝑓)

which are reserved as tag.

Fig. 16c: 𝑃𝑖𝑠𝑡𝑜𝑛. 𝑆𝑝𝑎𝑟𝑘() pseudo-code [24]

Crypt(I, O, 𝜔, unwrapFlag):

 while (hasMore(I) and (𝜔 < 𝑅𝑠))

 {

 x = I.get()

 O.put(state[𝜔] ^ x)

 state[𝜔] = x if (unwrapFlag) else (state[𝜔] ^ x)

 𝜔++

 }

 state[cryptEnd] ^= 𝜔

 Return

Inject(X, cryptingFlag):

 𝜔 = 𝑅𝑠 if (cryptingFlag) else 0

 state[injectStart] ^= 𝜔

 while (hasMore(X) and (𝜔 < 𝑅𝑎))

 {

 state[𝜔] ^= X.get()

 𝜔++

 }

 state[injectEnd] ^= 𝜔

 Return

Spark(eomFlag, l):

 if (eomFlag):

 state[EOM] ^= 255 if (l=0) else l

 else

 state[EOM] ^= 0

 state = 𝑓(state)

 Return

 𝑃𝑖𝑠𝑡𝑜𝑛. 𝐺𝑒𝑡𝑇𝑎𝑔(𝑇, 𝑙): This function writes the first 𝑙 bytes of the state 𝑆 to

output byte stream 𝑇 to be used as a tag or chaining value.

Fig. 16d: 𝑃𝑖𝑠𝑡𝑜𝑛. 𝐺𝑒𝑡𝑇𝑎𝑔() pseudo-code [24]

4.4.3.2 Engine Layer

The Engine layer controls and relies on an array of Π Piston objects operating in par-

allel. For every Piston the Engine maintains an attribute 𝐸𝑡 denoting how much output

was used as tag or chaining value in order to pass this to 𝑃𝑖𝑠𝑡𝑜𝑛. 𝐶𝑟𝑦𝑝𝑡() and avoid

the reuse of the bits as key stream.

An example Engine API would look as follows:

𝐸𝑛𝑔𝑖𝑛𝑒[Π, 𝑃𝑖𝑠𝑡𝑜𝑛𝑠]

Where Π denotes the number of parallel Pistons and 𝑃𝑖𝑠𝑡𝑜𝑛𝑠 denotes an array of Π

Piston objects.

The Engine also maintains a state machine in the 𝑃ℎ𝑎𝑠𝑒 attribute in order to direct the

function call sequence in order to maintain consistency. The 𝑃ℎ𝑎𝑠𝑒 indicates how the

Π input blocks are being constructed in the Π Piston objects with the following phases

being available:

 𝐹𝑟𝑒𝑠ℎ: The input blocks are empty

 𝐶𝑟𝑦𝑝𝑡𝑒𝑑: The input blocks have a plaintext fragment and more plaintext is

coming

 𝐸𝑛𝑑𝑂𝑓𝐶𝑟𝑦𝑝𝑡 : The input blocks have a plaintext fragment and no more

plaintext is coming

 𝐸𝑛𝑑𝑂𝑓𝑀𝑒𝑠𝑠𝑎𝑔𝑒: The input blocks have their fragments ready and the mes-

sage has been fully injected

The engine has five functions, illustrated in figures 17a-e, achieving the above func-

tionality:

GetTag(T, l):

 assert (𝑙 ≤ 𝑅𝑠)

 T.put(state[i]) for 𝑖 ∈ {0, . . , 𝑙 − 1}

 Return

 𝐸𝑛𝑔𝑖𝑛𝑒. 𝑆𝑝𝑎𝑟𝑘(𝑒𝑜𝑚𝐹𝑙𝑎𝑔, 𝑙): This function centralizes application of per-

mutation 𝑓 and calls the 𝑃𝑖𝑠𝑡𝑜𝑛. 𝑆𝑝𝑎𝑟𝑘(𝑒𝑜𝑚𝐹𝑙𝑎𝑔, 𝑙𝑖) function for each of

the Π Pistons, where 𝑙𝑖 ∈ 𝑙 with 𝑙 being a vector. After sparking the Pistons

the 𝐸𝑡 value is set to 𝑙.

Fig. 17a: 𝐸𝑛𝑔𝑖𝑛𝑒. 𝑆𝑝𝑎𝑟𝑘() pseudo-code [24]

 𝐸𝑛𝑔𝑖𝑛𝑒. 𝐶𝑟𝑦𝑝𝑡(𝐼, 𝑂, 𝑢𝑛𝑤𝑟𝑎𝑝𝐹𝑙𝑎𝑔): This function dispatches input 𝐼 to the

Pistons but requires the Engine to be in the 𝐹𝑟𝑒𝑠ℎ phase. It subsequently

calls 𝑃𝑖𝑠𝑡𝑜𝑛. 𝐶𝑟𝑦𝑝𝑡(𝐼, 𝑂, 𝐸𝑡[𝑖], 𝑢𝑛𝑤𝑟𝑎𝑝𝐹𝑙𝑎𝑔) on all of them where 𝑖 is the

Piston index. If 𝐼 has not been exhausted (ie. there is more input stream) then

the phase is set to 𝐶𝑟𝑦𝑝𝑡𝑒𝑑 else it is set to 𝐸𝑛𝑑𝑂𝑓𝐶𝑟𝑦𝑝𝑡.

Note that each Piston takes a fragment of 𝐼 and so the Pistons process up to

Π𝑅𝑠 bytes.

Fig. 17b: 𝐸𝑛𝑔𝑖𝑛𝑒. 𝐶𝑟𝑦𝑝𝑡() pseudo-code [24]

 𝐸𝑛𝑔𝑖𝑛𝑒. 𝐼𝑛𝑗𝑒𝑐𝑡(𝐴): This function dispatches metadata 𝐴 to the Pistons (pro-

vided the phase is not 𝐸𝑛𝑑𝑂𝑓𝑀𝑒𝑠𝑠𝑎𝑔𝑒) by calling

𝑃𝑖𝑠𝑡𝑜𝑛. 𝐼𝑛𝑗𝑒𝑐𝑡(𝐴, (𝑃ℎ𝑎𝑠𝑒 ∈ {𝐶𝑟𝑦𝑝𝑡𝑒𝑑, 𝐸𝑛𝑑𝑂𝑓𝐶𝑟𝑦𝑝𝑡})) on each of them. If

both input and metadata streams are exhausted the phase is set to

𝐸𝑛𝑑𝑂𝑓𝑀𝑒𝑠𝑠𝑎𝑔𝑒 and application of 𝑓 is delayed until a call to

𝐸𝑛𝑔𝑖𝑛𝑒. 𝐺𝑒𝑡𝑇𝑎𝑔𝑠() is made. Otherwise 𝐸𝑛𝑔𝑖𝑛𝑒. 𝑆𝑝𝑎𝑟𝑘(𝐹𝑎𝑙𝑠𝑒, 0Π) is

called and the phase is reset to 𝐹𝑟𝑒𝑠ℎ.

Note that each Piston takes a fragment of 𝐴 and so the Pistons process up to

Π(𝑅𝑎 − 𝑅𝑠) bytes if 𝐸𝑛𝑔𝑖𝑛𝑒. 𝐶𝑟𝑦𝑝𝑡() was called before and Π𝑅𝑎 bytes oth-

erwise.

Spark(eomFlag, l):

 Pistons[i].Spark(eomFlag, l[i]) for 𝑖 ∈ {0, . . , Π − 1}

 𝐸𝑡 = 𝑙
 Return

Crypt(I, O, unwrapFlag):

 assert (phase = fresh)

 Pistons[i].Crypt(I, O, 𝐸𝑡[i], unwrapFlag) for 𝑖 ∈ {0, . . , Π − 1}

 phase = crypted if (hasMore(I)) else endOfCrypt

 Return

Fig. 17c: 𝐸𝑛𝑔𝑖𝑛𝑒. 𝐼𝑛𝑗𝑒𝑐𝑡() pseudo-code [24]

 𝐸𝑛𝑔𝑖𝑛𝑒. 𝐺𝑒𝑡𝑇𝑎𝑔𝑠(𝑇, 𝑙): This function, which can only be called if the phase

is 𝐸𝑛𝑑𝑂𝑓𝑀𝑒𝑠𝑠𝑎𝑔𝑒 , calls 𝐸𝑛𝑔𝑖𝑛𝑒. 𝑆𝑝𝑎𝑟𝑘(𝑇𝑟𝑢𝑒, 𝑙) and collects the corre-

sponding tags in output stream 𝑇 from all Pistons by calling

𝑃𝑖𝑠𝑡𝑜𝑛. 𝐺𝑒𝑡𝑇𝑎𝑔(𝑇, 𝑙[𝑖]) on them where 𝑖 is the Piston index. It then sets the

phase to 𝐹𝑟𝑒𝑠ℎ again.

Fig. 17d: 𝐸𝑛𝑔𝑖𝑛𝑒. 𝐺𝑒𝑡𝑇𝑎𝑔𝑠() pseudo-code [24]

 𝐸𝑛𝑔𝑖𝑛𝑒. 𝐼𝑛𝑗𝑒𝑐𝑡𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒(𝑋, 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐹𝑙𝑎𝑔): This function, which can

only be called if the phase is 𝐹𝑟𝑒𝑠ℎ, injects the same metadata 𝑋 to all Piston

objects by calling 𝑃𝑖𝑠𝑡𝑜𝑛. 𝐼𝑛𝑗𝑒𝑐𝑡(𝑋𝑡[𝑖], 𝐹𝑎𝑙𝑠𝑒) on them and is used to inject

the 𝑆𝑈𝑉 and chaining values. When 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐹𝑙𝑎𝑔 is set (as set when in-

jecting the 𝑆𝑈𝑉) it appends to 𝑋 two bytes:

o One byte encoding the degree of parallelism Π (for domain separa-

tion between instances with a different number of Piston objects)

o One byte encoding the index of the Piston object (for domain sepa-

ration between Piston objects, in particular to avoid identical key-

streams)

After the whole stream 𝑋 is processed the phase is set to 𝐸𝑛𝑑𝑂𝑓𝑀𝑒𝑠𝑠𝑎𝑔𝑒.

Inject(A):

 assert (phase ∈ {fresh, crypted, endOfCrypt})

 cryptingFlag = (phase ∈ {crypted, endOfCrypt})

 Pistons[i].Inject(A, cryptingFlag) for 𝑖 ∈ {0, . . , Π − 1}

 if ((phase = crypted) or (hasMore(A))):

 {

 Spark(false, {0x00}Π)

 phase = fresh

 }

 else:

 phase = endOfMessage

 Return

GetTags(T, l):

 assert (phase = endOfMessage)

 Spark(true, l)

 Pistons[i].GetTag(T, 𝑙[𝑖]) for 𝑖 ∈ {0, . . , Π − 1}

 phase = fresh

 Return

Fig. 17e: 𝐸𝑛𝑔𝑖𝑛𝑒. 𝐼𝑛𝑗𝑒𝑐𝑡𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒() pseudo-code [24]

4.4.3.3 Motorist Layer

The Motorist layer controls an Engine object which controls a number Π of Piston

objects. The Motorist layer has a parameter 𝑊 (typically 32 or 64) denoting the

alignment unit which ensures fragment start offsets, tag lengths, chaining values and

fragments (except upon stream exhaustion) are a multiple of 𝑊 allowing for multi-

byte chunk data manipulation. The Motorist layer finally also has parameters which

determine security strength: capacity 𝑐 and tag length 𝜏. From the latter the following

is determined:

 𝑅𝑠: The squeezing rate is the largest multiple of 𝑊 such that at least 𝑐 bits

(for the inner part) or 32 bits (for the fragment offsets) of the state are never

used as output.

 𝑅𝑎: The absorbing rate is the largest multiple of 𝑊 such that at least 32 bits

at the end of the state are reserved for absorbing the fragment offsets.

 𝑐′: The chaining value length is the smallest multiple of 𝑊 greater than or

equal to capacity 𝑐.

An example Motorist API would look as follows:

𝑀𝑜𝑡𝑜𝑟𝑖𝑠𝑡[𝑓, Π, 𝑊, 𝑐, 𝜏]

The Motorist maintains a 𝑃ℎ𝑎𝑠𝑒 attribute with the following possible values:

 𝑅𝑒𝑎𝑑𝑦: The Motorist object has been initialized and no input has been given

yet.

InjectCollective(X, diversifyFlag):

 assert (phase = fresh)

 𝑋𝑡 = {𝑏𝑦𝑡𝑒𝑆𝑡𝑟𝑒𝑎𝑚()}Π

 while(hasMore(X))

 {

 x = X.get()

 𝑋𝑡[𝑖]. 𝑝𝑢𝑡(x) 𝐟𝐨𝐫 𝑖 ∈ {0, . . , Π − 1}

 }

 if(diversifyFlag):

 (𝑋𝑡[𝑖]. 𝑝𝑢𝑡(Π); 𝑋𝑡[𝑖]. 𝑝𝑢𝑡(𝑖)) 𝐟𝐨𝐫 𝑖 ∈ {0, . . , Π − 1}

 𝑋𝑡[𝑖]. 𝑠𝑒𝑒𝑘(0,0) 𝐟𝐨𝐫 𝑖 ∈ {0, . . , Π − 1}

 while(hasMore(𝑋𝑡[0]))
 {

 Pistons[i].Inject(𝑋𝑡[𝑖], 0) for 𝑖 ∈ {0, . . , Π − 1}

 if(hasMore(𝑋𝑡[0])):
 Spark(False, {0x00}Π)

 }

 phase = endOfMessage

 Return

 𝑅𝑖𝑑𝑖𝑛𝑔: The Motorist object processed the 𝑆𝑈𝑉 and can no wrap or unwrap.

This remains the phase until an error occurs.

 𝐹𝑎𝑖𝑙𝑒𝑑: The Motorist object received an incorrect tag.

The motorist has four functions, illustrated in figures 18a-d, achieving the above func-

tionality:

 𝑀𝑜𝑡𝑜𝑟𝑖𝑠𝑡. 𝑆𝑡𝑎𝑟𝑡𝐸𝑛𝑔𝑖𝑛𝑒(𝑆𝑈𝑉, 𝑡𝑎𝑔𝐹𝑙𝑎𝑔, 𝑇, 𝑢𝑛𝑤𝑟𝑎𝑝𝐹𝑙𝑎𝑔, 𝑓𝑜𝑟𝑔𝑒𝑡𝐹𝑙𝑎𝑔):

This function, which can only be called if the phase is 𝑅𝑒𝑎𝑑𝑦, starts a ses-

sion with a given 𝑆𝑈𝑉 read from the 𝑆𝑈𝑉 byte stream. It is collectively in-

jected with the 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐹𝑙𝑎𝑔 set for domain separation by calling

𝐸𝑛𝑔𝑖𝑛𝑒. 𝐼𝑛𝑗𝑒𝑐𝑡𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒(𝑆𝑈𝑉, 𝑇𝑟𝑢𝑒). If the parameter 𝑓𝑜𝑟𝑔𝑒𝑡𝐹𝑙𝑎𝑔 is set

a knot is needed and 𝑀𝑜𝑡𝑜𝑟𝑖𝑠𝑡. 𝑀𝑎𝑘𝑒𝐾𝑛𝑜𝑡() is called after which

𝑀𝑜𝑡𝑜𝑟𝑖𝑠𝑡. 𝐻𝑎𝑛𝑑𝑙𝑒𝑇𝑎𝑔(𝑡𝑎𝑔𝐹𝑙𝑎𝑔, 𝑇, 𝑢𝑛𝑤𝑟𝑎𝑝𝐹𝑙𝑎𝑔) is called. This last step

supports generation of verification of a tag by means of 𝑡𝑎𝑔𝐹𝑙𝑎𝑔 . If

𝑢𝑛𝑤𝑟𝑎𝑝𝐹𝑙𝑎𝑔 is set it verifies tag 𝑇 else it returns a tag in 𝑇. If this succeeds

then the phase is set to 𝑅𝑖𝑑𝑖𝑛𝑔.

Fig. 18a: 𝑀𝑜𝑡𝑜𝑟𝑖𝑠𝑡. 𝑆𝑡𝑎𝑟𝑡𝐸𝑛𝑔𝑖𝑛𝑒() pseudo-code [24]

 𝑀𝑜𝑡𝑜𝑟𝑖𝑠𝑡. 𝑊𝑟𝑎𝑝(𝐼, 𝑂, 𝐴, 𝑇, 𝑢𝑛𝑤𝑟𝑎𝑝𝐹𝑙𝑎𝑔, 𝑓𝑜𝑟𝑔𝑒𝑡𝐹𝑙𝑎𝑔): This function,

which can only be called if the phase is 𝑅𝑖𝑑𝑖𝑛𝑔, unwraps cryptograms or

wraps messages (depending on if 𝑢𝑛𝑤𝑟𝑎𝑝𝐹𝑙𝑎𝑔 is set or not, respectively).

The function starts by processing input 𝐼 and metadata 𝐴.

If there is no available input or metadata it sets the right Engine phase by

calling 𝐸𝑛𝑔𝑖𝑛𝑒. 𝐼𝑛𝑗𝑒𝑐𝑡(𝐴) . As long as there is available input 𝐼 it calls

𝐸𝑛𝑔𝑖𝑛𝑒. 𝐶𝑟𝑦𝑝𝑡(𝐼, 𝑂, 𝑢𝑛𝑤𝑟𝑎𝑝𝐹𝑙𝑎𝑔), where 𝑂 denotes the output stream, fol-

StartEngine(SUV, tagFlag, T, unwrapFlag, forgetFlag):

 assert (phase = ready)

 Engine.InjectCollective(SUV, true)

 if (forgetFlag):

 MakeKnot()

 r = HandleTag(tagFlag, T, unwrapFlag)

 if (r):

 phase = riding

 Return r

lowed by a call 𝐸𝑛𝑔𝑖𝑛𝑒. 𝐼𝑛𝑗𝑒𝑐𝑡(𝐴) until there is no more available input.

Next, as long as there is available metadata 𝐴 it calls 𝐸𝑛𝑔𝑖𝑛𝑒. 𝐼𝑛𝑗𝑒𝑐𝑡(𝐴) un-

til there is no more available metadata. If either Π > 1 or 𝑓𝑜𝑟𝑔𝑒𝑡𝐹𝑙𝑎𝑔 is set

a call to 𝑀𝑜𝑡𝑜𝑟𝑖𝑠𝑡. 𝑀𝑎𝑘𝑒𝐾𝑛𝑜𝑡() is made. Finally a call to

𝑀𝑜𝑡𝑜𝑟𝑖𝑠𝑡. 𝐻𝑎𝑛𝑑𝑙𝑒𝑇𝑎𝑔(𝑇𝑟𝑢𝑒, 𝑇, 𝑢𝑛𝑤𝑟𝑎𝑝𝐹𝑙𝑎𝑔) is made and only if it suc-

ceeds does the 𝑀𝑜𝑡𝑜𝑟𝑖𝑠𝑡. 𝑊𝑟𝑎𝑝 call succeed and produce output in output

stream 𝑂. A failing call to 𝑀𝑜𝑡𝑜𝑟𝑖𝑠𝑡. 𝐻𝑎𝑛𝑑𝑙𝑒𝑇𝑎𝑔 results in a cleared output

stream 𝑂.

This function can be called to either wrap or unwrap which is done as fol-

lows:

o 𝑊𝑟𝑎𝑝𝑝𝑖𝑛𝑔 : The function is to be called with 𝑢𝑛𝑤𝑟𝑎𝑝𝐹𝑙𝑎𝑔 =

𝐹𝑎𝑙𝑠𝑒, a plaintext input stream 𝐼 and metadata stream 𝐴, an output

stream 𝑂 for receiving the ciphertext and tag stream 𝑇 for receiving

the tag as well as 𝑓𝑜𝑟𝑔𝑒𝑡𝐹𝑙𝑎𝑔.

o 𝑈𝑛𝑤𝑟𝑎𝑝𝑝𝑖𝑛𝑔: The function is to be called with 𝑢𝑛𝑤𝑟𝑎𝑝𝐹𝑙𝑎𝑔 =

𝑇𝑟𝑢𝑒 , a ciphertext input stream 𝐼 , metadata stream 𝐴 , and tag

stream 𝑇 and an output stream 𝑂 for receiving the plaintext as well

as 𝑓𝑜𝑟𝑔𝑒𝑡𝐹𝑙𝑎𝑔. The function returns 𝑇𝑟𝑢𝑒 iff the tag is correct and

false otherwise. The function clears 𝑂 if the tag is incorrect.

 Fig. 18b: 𝑀𝑜𝑡𝑜𝑟𝑖𝑠𝑡. 𝑊𝑟𝑎𝑝() pseudo-code [24]

Wrap(I,O,A,T, unwrapFlag, forgetFlag):

 assert (phase = riding)

 Engine.Inject(A) if (hasMore(I) and not (hasMore(A)))

 while(hasMore(I)):

 {

 Engine.Crypt(I, O, unwrapFlag)

 Engine.Inject(A)

 }

 while(hasMore(A)):

 Engine.Inject(A)

 MakeKnot() if ((Π > 1) or (forgetFlag))

 r = HandleTag(true, T, unwrapFlag)

 O.erase() if not(r)

 Return r

 𝑀𝑜𝑡𝑜𝑟𝑖𝑠𝑡. 𝑀𝑎𝑘𝑒𝐾𝑛𝑜𝑡(): This function, which is only used internally by the

Motorist, is used to either make a tag depend on the state of Π > 1 Pistons

or, when Π = 1, achieve forgetting. The function starts by retrieving a 𝑐′-bit

chaining values from every Piston object by calling

𝐸𝑛𝑔𝑖𝑛𝑒. 𝐺𝑒𝑡𝑇𝑎𝑔𝑠(𝑇′, [
𝑐′

8
]

Π

), where 𝑇′ is an initially empty local bytestream,

and concatenates them into a Π𝑐′-bit string which is collectively injected into

all Piston objects by calling 𝐸𝑛𝑔𝑖𝑛𝑒. 𝐼𝑛𝑗𝑒𝑐𝑡𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒(𝑇′, 𝐹𝑎𝑙𝑠𝑒).

Fig. 18c: 𝑀𝑜𝑡𝑜𝑟𝑖𝑠𝑡. 𝑀𝑎𝑘𝑒𝐾𝑛𝑜𝑡() pseudo-code [24]

 𝑀𝑜𝑡𝑜𝑟𝑖𝑠𝑡. 𝐻𝑎𝑛𝑑𝑙𝑒𝑇𝑎𝑔(𝑡𝑎𝑔𝐹𝑙𝑎𝑔, 𝑇, 𝑢𝑛𝑤𝑟𝑎𝑝𝐹𝑙𝑎𝑔): This function, which is

only used internally by the Motorist, starts out with an initially empty byte

stream 𝑇′ and if 𝑡𝑎𝑔𝐹𝑙𝑎𝑔 is set proceeds to obtain tags using

𝐸𝑛𝑔𝑖𝑛𝑒. 𝐺𝑒𝑡𝑇𝑎𝑔𝑠(𝑇′, [
𝜏

8
, 0Π−1]) and followed by either copying 𝑇′ to 𝑇 (if

𝑢𝑛𝑤𝑟𝑎𝑝𝐹𝑙𝑎𝑔 = 𝐹𝑎𝑙𝑠𝑒) to obtain a tag during wrapping or (if

𝑢𝑛𝑤𝑟𝑎𝑝𝐹𝑙𝑎𝑔 = 𝑇𝑟𝑢𝑒) checking whether 𝑇′ ≠ 𝑇 and if so setting phase to

𝐹𝑎𝑖𝑙𝑒𝑑 in order to indicate that the resulting tag and desired tag did not

match during unwrapping. If 𝑡𝑎𝑔𝐹𝑙𝑎𝑔 is not set it simply calls

𝐸𝑛𝑔𝑖𝑛𝑒. 𝐺𝑒𝑡𝑇𝑎𝑔𝑠(𝑇′, 0Π) to move the engine phase along.

Fig. 18d: 𝑀𝑜𝑡𝑜𝑟𝑖𝑠𝑡. 𝐻𝑎𝑛𝑑𝑙𝑒𝑇𝑎𝑔() pseudo-code [24]

MakeKnot():

 T′ = byteStream()

 Engine.GetTags(T′, {
c′

8
}Π)

 T′. 𝑠𝑒𝑒𝑘(0,0)

 Engine.InjectCollective(T′, false)

 Return

HandleTag(tagFlag, T, unwrapFlag):

 T′ = byteStream()

 if not(tagFlag):

 Engine.GetTags(T′, {0𝑥00}Π)

 else:

 l = {0𝑥00}Π; 𝑙[0] =
𝜏

8

 Engine.GetTags(T′, l)
 if not(unwrapFlag): (T = T′)

 else if not(T′ = T):

 phase = failed;

 Return false

 Return true

After starting a session with 𝑀𝑜𝑡𝑜𝑟𝑖𝑠𝑡. 𝑆𝑡𝑎𝑟𝑡𝐸𝑛𝑔𝑖𝑛𝑒() the Motorist object can re-

ceive an arbitrary number of calls to 𝑀𝑜𝑡𝑜𝑟𝑖𝑠𝑡. 𝑊𝑟𝑎𝑝(). The nonce requirement of

the 𝑆𝑈𝑉 holds at session level (within a session messages have no explicit number of

nonce but must be processed in-order for tag verification). Both communicating par-

ties must use synchronized values for the 𝑡𝑎𝑔𝐹𝑙𝑎𝑔 and 𝑓𝑜𝑟𝑔𝑒𝑡𝐹𝑙𝑎𝑔 parameters.

4.5 The 𝑲𝒆𝒄𝒄𝒂𝒌𝒑 permutations

The 𝐾𝑒𝑐𝑐𝑎𝑘𝑝 permutations are derived from the 𝐾𝑒𝑐𝑐𝑎𝑘𝑓 permutations (see section

3.2) and have a tweakable number of rounds. A 𝐾𝑒𝑐𝑐𝑎𝑘𝑝 permutation is defined as

𝐾𝑒𝑐𝑐𝑎𝑘𝑝[𝑏, 𝑛𝑟] where 𝑏 is the permutation width (where 𝑏 = 25 ∗ 2𝑙 and 0 ≤ 𝑙 ≤

6, 𝑙 ∈ ℤ) and 𝑛𝑟 the number of rounds. In short 𝐾𝑒𝑐𝑐𝑎𝑘𝑝[𝑏, 𝑛𝑟] consists of the appli-

cation of the last 𝑛𝑟 rounds of 𝐾𝑒𝑐𝑐𝑎𝑘𝑓[𝑏] . In the case that 𝑛𝑟 = 12 + 2𝑙 then

𝐾𝑒𝑐𝑐𝑎𝑘𝑝[𝑏, 𝑛𝑟] = 𝐾𝑒𝑐𝑐𝑎𝑘𝑓[𝑏].

4.6 The Key Pack

Keyak keys are encoded in so-called Key Packs which serve to encode secret keys as

prefix of an 𝑆𝑈𝑉. Key packs make use of the pad10*[𝑟](|𝑀|) padding rule which

returns a bitstring 10𝑞 where 𝑞 = (|𝑀| − 1) mod 𝑟. If 𝑟 is a multiple of 8 and 𝑀 a

sequence of bytes the padding rule returns the bytestring 0𝑥01 0𝑥00
𝑞−7

8 . Given a key

𝐾 a key pack of 𝑙 bytes is defined as:

𝐾𝑒𝑦𝑃𝑎𝑐𝑘(𝐾, 𝑙) = 𝑒𝑛𝑐8(𝑙)||𝐾||𝑝𝑎𝑑10*[𝑙 − 8](|𝐾|)

Where 𝑙 < 256 indicates the full length of the key pack in bytes and key 𝐾 is limited

to 8(𝑙 − 1) − 1 bits resulting in the key pack illustrated in figure 19.

Fig. 19: 𝐾𝑒𝑦𝑃𝑎𝑐𝑘(𝐾, 18) with 64-bit key 𝐾.

4.7 The Keyak Encryption Scheme

Combining the above documented functionality gives us the Keyak encryption

scheme as an instantiation of the Motorist mode with a 𝐾𝑒𝑐𝑐𝑎𝑘𝑝 instance as permuta-

tion. A Keyak instance is defined as follows:

𝐾𝑒𝑦𝑎𝑘[𝑏, 𝑛𝑟 , Π, 𝑐, 𝜏] = 𝑀𝑜𝑡𝑜𝑟𝑖𝑠𝑡[𝐾𝑒𝑐𝑐𝑎𝑘𝑝[𝑏, 𝑛𝑟], Π, 𝑊, 𝑐, 𝜏]

Where 𝑊 = 𝑚𝑎𝑥 (
𝑏

25
, 8).

The SUV is given as:

𝑆𝑈𝑉 = 𝐾𝑒𝑦𝑃𝑎𝑐𝑘(𝐾, 𝑙𝑘)||𝑁

Where 𝑙𝑘 =
𝑊

8
⌈

𝑐+9

𝑊
⌉ and no limitation on the length of nonce 𝑁.

4.7.1 Keyak Named Instances

There are five named Keyak instances taking on various specific parameters and being

suitable for various different optimizations. All instances have the following parame-

ters: 𝑛𝑟 = 12, 𝑐 = 256, 𝜏 = 128 (specifying the usage of 12 rounds, a capacity of

256-bits and a tag size of 128-bits respectively). The instances are, in order of increas-

ing state size:

 River Keyak: 𝑏 = 800, Π = 1

 Lake Keyak: 𝑏 = 1600, Π = 1 (primary recommendation)

 Sea Keyak: 𝑏 = 1600, Π = 2

 Ocean Keyak: 𝑏 = 1600, Π = 4

 Lunar Keyak: 𝑏 = 1600, Π = 8

For River Keyak 𝑊 = 32 and key pack length 𝑙𝑘 = 36 𝑏𝑦𝑡𝑒𝑠 while for the other in-

stances 𝑊 = 64, 𝑙𝑘 = 40 𝑏𝑦𝑡𝑒𝑠. All instances take a (variable length) public message

number or nonce 𝑁 but no private message number. If 𝑁 is to be fixed length it is

proposed to be 58 bytes for River Keyak and 150 bytes for other instances. All in-

stances produce a 𝜏 = 128-bit tag (or MAC) which can be truncated if desired by the

user. If not truncated the gap between plaintext and ciphertext length is 128 bits. Key

sizes are variable with key size 128 ≤ 𝑘 ≤ 𝑙𝑘 (where the maximum is at least 256

bits).

References

1. https://en.wikipedia.org/wiki/Authenticated_encryption

2. https://en.wikipedia.org/wiki/Bit-flipping_attack

3. https://en.wikipedia.org/wiki/Padding_oracle_attack

4. http://blog.cryptographyengineering.com/2011/10/attack-of-week-xml-

encryption.html

5. http://blog.cryptographyengineering.com/2012/05/how-to-choose-authenticated-

encryption.html

6. K. Paterson. Authenticated Encryption in TLS

7. D. Bernstein. Failures of secret-key cryptography

8. P. Rogaway. Evaluation of Some Blockcipher Modes of Operation

9. H. Krawczyk. The Order of Encryption and Authentication for Protecting Com-

munications (Or: How Secure is SSL?)

10. https://commons.wikimedia.org/wiki/Category:Block_cipher_modes_of_operatio

n

11. http://blog.cryptographyengineering.com/2012/05/how-to-choose-authenticated-

encryption.html

12. http://www.ietf.org/mail-archive/web/tls/current/msg12766.html

13. https://en.wikipedia.org/wiki/POODLE

14. http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-

July20_2007.pdf

15. http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

16. http://competitions.cr.yp.to/caesar-call.html

17. http://competitions.cr.yp.to/caesar-call.html (functional requirements table)

18. G. Bertoni et al. The Keccak reference. Retrieved from

http://keccak.noekeon.org/Keccak-reference-3.0.pdf

19. http://csrc.nist.gov/groups/ST/hash/sha-3/fips202_standard_2015.html

20. G. Bertoni et al. Cryptographic sponge functions

21. http://keccak.noekeon.org/Keccak-f-PiecesOfState.pdf

22. http://keccak.noekeon.org/specs_summary.html

23. G. Bertoni et al. Inside Keccak.

24. G. Bertoni et al. CAESAR submission: Keyak v2. Retrieved from

http://keyak.noekeon.org/Keyak-2.0.pdf

25. B. Mennink et al. Security of Full-State Keyed and Duplex Sponge: Applications

to Authenticated Encryption.

26. G. Bertoni et al. On the security of the keyed sponge construction

27. D. Chang et al. A Keyed Sponge Construction with Pseudorandomness in the

Standard Model

28. S. Even et al. A construction of a cipher from a single pseudorandom permuta-

tion

29. F. Abed et al. General Overview of the Authenticated Schemes for the First

Round of the CAESAR Competition

https://en.wikipedia.org/wiki/Padding_oracle_attack
http://competitions.cr.yp.to/caesar-call.html
http://keccak.noekeon.org/Keccak-f-PiecesOfState.pdf
http://keccak.noekeon.org/specs_summary.html
http://keyak.noekeon.org/Keyak-2.0.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/VANASSCHE_SpongeKeyed.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/March2012/documents/papers/CHANG_paper.pdf

