
Lightweight Fault Attack Resistance in Software
Using Intra-Instruction Redundancy

Conor Patrick, Bilgiday Yuce, Nahid Farhady Ghalaty, Patrick Schaumont

Bradley Department of Electrical and Computer Engineering
Virginia Tech

Blacksburg, USA
{conorpp,bilgiday,farhady,schaum}@vt.edu

Abstract. Fault attack countermeasures can be implemented by storing
or computing sensitive data in redundant form, such that the faulty data
can be detected and restored. We present a class of lightweight, portable
software countermeasures for block ciphers. Our technique is based on re-
dundant bit-slicing, and it is able to detect faults in the execution of a
single instruction. In comparison to earlier techniques, we are able to in-
tercept data faults as well as instruction sequence faults using a uniform
technique. Our countermeasure thwarts precise bit-fault injections through
pseudo-random shifts in the allocation of data bit-slices. We demonstrate
our solution on a full AES design and confirm the claimed security protec-
tion through a detailed fault simulation for a 32-bit embedded processor.
We also quantify the overhead of the proposed fault countermeasure, and
find a minimal increase in footprint (14%), and a moderate performance
overhead between 125% to 317%, depending on the desired level of fault-
attack resistance.

Keywords: Fault attacks, Fault resistance, Intra-instruction redundancy,
Bitslicing, Block ciphers

1 Introduction

The injection of faults in cryptographic software is a well-studied technique to
extract cryptographic keys. Originally demonstrated against public-key cryptogra-
phy [1], their scope has since been widened to the symmetric-key case. The current
state of the art in differential fault analysis on the Advanced Encryption Standard
can extract an AES-128 key with just two faults [2]. Therefore, for applications
where fault injection is a relevant threat, it is crucial to detect the occurrence of
even a single fault and respond appropriately. In this contribution, we study and
develop countermeasure techniques that are applicable to software, and that does
not need any special hardware. Software countermeasures against fault attacks are
commonly developed using redundancy. However, all redundancy based techniques
share a common weakness: they are ineffective against an adversary who can inject
consistent faults in redundant sections of code or data. This is especially relevant
for implementations that are time-redundant, since they only require the adversary
to inject the same fault sequentially.



In this paper, we propose a technique that enables the software to exploit re-
dundancy for fault attack protection within a single instruction; we propose the
term intra-instruction redundancy to describe it. Our technique is cross-platform
and requires that an algorithm be bit-sliced. We focus on block ciphers, as they all
can be bit-sliced. To protect from computation faults, we allocate some bit-slices as
redundant copies of the true payload data slices. A data fault can then be detected
by the difference between a data slice and its redundant copy after the encryption
of the block completes. To protect the computations from instruction faults such
as instruction skip, we also allocate some of the bit-slices as check-slices which
compute a known result. The intra-instruction redundancy countermeasure is thus
obtained through the bit-sliced design of a cipher, with redundant data-slices to
detect computation faults and check-slices to detect instruction faults. This basic
mechanism is then further strengthened against targeted fault-injection as follows.
First, we pipeline the bit-sliced computation such that each slice computes a dif-
ferent encryption round. Since a fault-injection adversary is typically interested in
the last or penultimate round, and since there will be only a few bits in a word that
contain such a round, the pipelined intra-instruction redundancy countermeasure
reduces the attack surface considerably. Second, we also randomize the slice as-
signment after each encryption, such that a cipher round never remains on a single
slice for more than a single encryption. We show that this final countermeasure,
the shuffled pipelined intra-instruction redundancy, is very effective and requires
an adversary who can control fault injection with single-cycle, bit-level targeting
chosen bits. We are not aware of a fault injection mechanism that achieves this
level of precision.

The contributions of the paper are as follows.

– We propose a software countermeasure based on redundant bit slicing. The bit
slices are used for data redundancy as well as control redundancy. The latter
is achieved by computing a known answer.

– The proposed countermeasure is generic and can still be used in combination
with other software countermeasures such as infective countermeasures or side-
channel resistant techniques based on masking.

– The security of the proposed countermeasure is quantitatively analyzed to
establish estimated fault coverage. In addition, it is empirically tested using
simulation for different fault models including instruction skip, random word,
random byte and bit-precision faults.

– The bit-sliced design leads to a secure fault detection and fault handling ap-
proach that is purely computational, and that avoids comparison and decision
making. This avoids a well-known single point-of-failure in redundancy-based
countermeasures.

– We evaluate the overhead of the countermeasure over an unprotected, bit-sliced
implementation of AES-128 that runs at 469.3 cycles/bytes, we show that the
highest level of protection is achieved at 1957 cycles per byte, which protects
against targeted, repeatable, multiple bit faults.

The rest of the paper is organized as follows. In the next section, we provide ad-
ditional details on the fault models used in this work. In Section III, we highlight



the differences of previous software countermeasures with our proposed counter-
measure. Section IV is an up-close discussion of the design of our countermeasure;
we elaborate on the bit-slice allocation strategy and on the integration of the pro-
tected design on embedded platforms. Section V estimates the fault coverage of
the proposed countermeasures under different fault models. Section VI presents the
implementation overhead for a 32-bit embedded processor and empirically demon-
strates the fault countermeasure operation using fault simulation. We conclude the
paper in Section VII.

2 Fault Models

This section details the fault models that we used in this paper to evaluate our
countermeasures. The fault model is the expected effect of the fault injection on
a cryptosystem. The manipulated data may affect instruction opcodes as well as
data, and we distinguish these two cases as instruction faults and computation
faults.

Computation Faults: These faults cause errors in the data that is processed
by a program. There is a trade-off between the accuracy by which an adversary can
control the fault injection, and the required sophistication of a fault countermeasure
that thwarts it. Therefore, we assume four computational fault models:

1. Random Word : The adversary can target a specific word in a program and
change its value into a random value unknown to the adversary.

2. Random Byte: The adversary can target a specific word in a program and
change a single byte of it into a random value unknown to the adversary.

3. Random Bit : The adversary can target a specific word in a program and change
a single bit of it into a random value unknown to the adversary.

4. Chosen Bit Pair : The adversary can target a chosen bit pair of a specific word
in a program, and change it into a random value unknown to the adversary.

Instruction Faults: This fault model assumes that an attacker can change the
opcode of an instruction by fault injection. A very common model is the Instruction
Skip fault model, which replaces the opcode of an instruction with a nop instruction.
Using this model, an attacker can skip the execution of a specific instruction in the
program.

3 Related Work

The two principal techniques for a fault countermeasure are detection-based and
infection-based [3]. We start with detection-based countermeasures in software, as
they are most similar to our proposal. A classic technique relies on time redun-
dancy, such as duplicate encryption or encryption followed by decryption. This
allows the detection of faults by comparing the consistency of the redundant ex-
ecutions. These techniques, however, do not work well against an adversary who
is able to inject consistent faults in the redundant copies, or against an adversary
who directly targets the comparison. Several time redundant techniques have been



proposed to make consistent fault injection more difficult. For example, instruction
duplication and triplication [4] are used because it is assumed that back-to-back
fault injection is harder than fault injections that are relatively far spaced apart.
Duplication and triplication were found to incur 3.4 and 10.6 times performance
overhead, respectively [4]. However, duplication and triplication are relatively easy
to overcome with a modern fault injection setup. More sophisticated techniques
are possible, but they are algorithm-specific. Examples are techniques based on
invariant properties of a block cipher [5], or based on storing sensitive variables
in a transformed format [6]. However, we are interested in a generic, algorithm
independent technique.

Another category of detection-based countermeasures use information redun-
dancy, which uses additional check variables or parity bits [4] to detect faults in
the data. This was found to incur between 3.5 - 4.7 times performance overhead [4].
A recent proposal observed that Wave Dynamic Differential Logic (WDDL), which
represents data in complementary format, is able to detect computation faults [7]
but no performance metrics are provided. While these information-based counter-
measures are generic and easy to apply to a broad class of algorithms, they are
unable to detect low-level instruction-level faults in the underlying processor when
implemented in software.

The second major class of countermeasures uses infection. The idea is that
injected faults will also destroy the invariant properties of the fault. This effectively
eliminates the possibility of differential fault analysis. However, for every infective
countermeasure proposed so far, a corresponding attack has been demonstrated
[8, 9].

Most related works show that they have good fault coverage but it’s under a
narrow fault model. A common fault model is to assume that attackers can only
inject one fault at a time. But if an attacker can inject more than one fault or affect
multiple instructions with one fault, the fault coverage is likely to plummet.

In this paper, we propose detection-based countermeasures against fault attacks
in software that are based on intra-instruction redundancy. We go beyond redun-
dant encoding of information by also including the ability to detect instruction
faults as well as computation faults. We show that these countermeasures can pro-
tect against a variety of realistic fault models. To the best of our knowledge, this
is the first work that provides comprehensive coverage against processor-level fault
attacks.

4 Proposed Software Countermeasures for Fault Attacks

We will explain the motivation and main idea of our countermeasures. We will then
explain how they can be implemented. Finally, we will provide some discussion on
the performance and footprint impact.

The countermeasures are based on bit-slicing. As we will explain further, bit-
slicing allows for a program to dynamically select different data flows to be present
in a processor word. This is attractive for a fault attack countermeasure because it
presents a new way to leverage redundancy. Each data word can be split amongst
regular data streams and redundant data streams, allowing redundancy to be



Fig. 1. Transpose of 32 blocks to fit bitwise into 128 32-bit words.

present spatially in all instructions without actually having to re-execute anything.
Because the redundancy is interleaved with the data in every instruction, we call
this Intra-Instruction Redundancy (IIR). By never separating the data from the
redundancy in the processor word, we use pure spatial redundancy rather than
commonly used time-based redundancy, which is vulnerable to repeated fault in-
jections [10].

In this work we consider two ways to detect faults using redundancy. First, if
you are computing data where the result is unknown, you can only detect a fault
by recomputing the data an additional time to compare the results. Second, if the
result is already known before computation, you can store a read only copy of the
result and only need to execute on the data once to reproduce the result and check
that it is the same.

Our countermeasure scheme relies on making comparisons at the end of encryp-
tion rounds. Because the comparisons are a very small part of the code, we assume
we can cheaply duplicate them enough such that an adversary may not reasonably
skip all of them using faults. In the advent of a fault detection, a random cipher
text is output and the program may either restart encryption or enact a different,
application-specific policy.

4.1 Bit-slicing without Fault Attack Protection

Bit-slicing is a technique used commonly in block ciphers and embedded systems to
fully utilize the word length of a processor for all operations, potentially increasing
the total throughput. Bit-slicing avoids data-dependent memory lookups and be-
cause of that, data-dependent cache effects. It involves decomposing all components
into boolean operations and orienting the data such that one bit can be computed
at a time per instruction. If one bit is computed at a time, then a 32 bit processor
word can be filled with 32 different blocks, computing all blocks simultaneously.



Fig. 2. Bit-slicing with Intra-Instruction Redundancy using 15 data (B), 15 redundant
(B’), and 2 known ciphertext (KC) slices. Each KC slice is aligned with its corresponding
round key slices in other words.

A prerequisite for bit-slicing is to transpose the layout of input blocks, as shown
in Figure 1. At the top, a traditional layout of blocks is depicted. There are 32
blocks, each composed of 4, 32 bit data words. All of them must be transposed.
In the transposed layout, each word contains one bit from every block. In this
format, each bit from 32 different blocks can be computed simultaneously for any
instruction. A slice refers to a bit location in all words that together make up one
block.

4.2 Intra-Instruction Redundancy

In traditional bit-sliced implementations, each slice is allocated to operate on a
different input block for maximum throughput (Fig. 1). Instead, we separate slices
into three categories: data slices (B), redundant slices (B′), and Known Ciphertext
(KC) slices for fault detection (Fig. 2). Data slices and redundant slices operate
on the same input plaintext, and thus, they produce the same ciphertext if no fault
occurs. If a fault occurs during their execution, then it will be detected when results
are compared at the end of encryption.

However, if both B and B′ experience the same fault, then both of them will
have the same faulty ciphertext and a fault cannot be detected. For example, this
would always be the case for instruction skips. To address this issue, we include
KC slices in addition to data and redundant slices. Instead of encrypting the in-
put plaintexts with the run-time secret key, KC slices encrypt internally stored
plaintexts with a different key, each of which are decided at design time. There-
fore, the correct ciphertexts corresponding to these internally stored plaintexts are
known by the software designer beforehand. If no fault is injected into the exe-
cution of a KC slice, it will produce a run-time ciphertext that is equal to the
known, design-time ciphertext. In case of a computation or instruction fault, the
run-time ciphertext will be different than the design-time ciphertext. Therefore,
the run-time and design-time ciphertexts of the KC slices are compared at the end
of encryption for fault detection. Because the round keys for the data slices and
round keys for the KC slices can be intermixed at the slice level, we can execute
KC slices together with the data and redundant slices. Figure 2 shows the slice



Fig. 3. Pipelined bit-sliced layout for 32 bit processor. RK0 − 9 are ten different round
keys. B0 − 9 are different input blocks and B′09 are their redundant copies. KC is a
known ciphertext slice. C0− 9 are the round keys used to produce the known ciphertext.

allocation used in this work, which includes 15 data slices (B0− 14), 15 redundant
slices (B′0 − 14), and 2 KC slices (KC0 − 1). All slices are split across 128 words
for a 128 bit block size.

A set of known plaintext-ciphertext pairs is included in the program from which
KC slices can be selected from randomly for an encryption. This is because each
KC slice only has a 50% chance of detecting an instruction fault. If only a couple of
them are used, then there will likely be parts of the block cipher where instruction
faults do not affect the KC slices. By selecting from a larger set of ciphertext-
plaintext pairs, we significantly reduce the chance of an adversary finding such
parts of the program. Each plaintext-ciphertext pair will be the size of two blocks
of the cipher.

An adversary can bypass this countermeasure by injecting two bit faults that
are next to each other in the processor word. The two bit fault has to align with
any of the B slices and the corresponding B′ slice. Then both will produce the
same faulty ciphertext, going undetected.

4.3 Pipelined Intra-Instruction Redundancy

For an adversary to carry out a fault analysis attack, he must inject a fault into a
target round of the block cipher [11, 12]. It is not enough to cause an undetected
fault in the wrong round, as the faulty ciphertext will not be useful in analysis.
Previously, all data and redundant slice pairs in the target word operate on the
same round. Therefore, an adversary can target any combinations of these pairs to
bypass IIR. Here we will explain how we can make the rounds spatial by making
them correspond to slices within each word, instead of different words executed at
different times. This makes fault injection harder as the faults will have to target
specific bit locations.

Because block cipher rounds differ only in the round key used, we can make
different bits correspond to different rounds by aligning slices with different round



keys. Doing this means blocks will be computed in a pipelined fashion as shown
in Figure 3, which shows ten rounds. The round keys are doubled and interleaved
with the known ciphertext key beforehand to align with the pipeline. Each block is
transposed one at a time rather than 32 at a time. For every iteration, 3 slices are
shifted into the 128 word state (1 data, 1 redundant, and 1 KC). Initially shifted in
is B0. Running for one iteration will compute round one of B0. Applying another
shift aligns B0 for round 2 and shifts in B1 for round 1. This eliminates the need
to have a set of plaintext-ciphertext pairs as it will be okay to have one pair. One
pair will effectively make 10 different KC slices amongst the 10 rounds.

In this pipeline, because each set of 3 bits corresponds to a different round, any
two bit fault will not suffice to undo the countermeasure. There is now only one
valid bit location to successfully inject a 2 bit fault. For example, to fault round 9,
a 2 bit fault must be injected at bit location 27. It is non-trivial for an adversary
to inject a fault that is in a target bit location and consists of two adjacent bits.

Astute readers will point out that the last round in some block ciphers differs in
more than just the round key. For example, in AES, the last round does not have
the mix-columns step. Some additional masking can done to remove the effect of
particular steps on any round(s). To be able to pipeline rounds that differ in steps,
we add the following computation to each operation in the special step.

B = (BS & RM) | (B & ∼RM)

Where B is the block going through a particular step, BS is the computed
result after the step, and RM is a mask representing the rounds that use the step.
By doing this, the step will be applied to only the rounds that use it and leave the
other round(s) the same.

4.4 Shuffled, Pipelined Intra-Instruction Redundancy

For our final countermeasure stage, we assume a highly skilled adversary who can
inject multiple bit faults into target bit locations. In our case, we need to protect
from a targeted 2-bit fault.

For each plaintext, we can effectively apply a random rotation to all of the
slices and their corresponding round keys. The randomness is from an initial secret
number that is continually XOR’d with generated ciphertext. We can reasonably
assume that the adversary will not be able to predict the random rotation. Despite
the adversary being able to inject known bit location faults, he will not know which
bit corresponds to what round, making the attack much more difficult.

To support random shifts, we support dynamic allocation of each slice in the
processor word, rather than statically defining which bits correspond to each round.
The transpose step will have to support transposing into and out of any target bit
location, rather than always shifting into bit location 0 and shifting out of bit
location 29.

4.5 Secure, Comparison-Free Fault Handling

Rather than checking the memory using excessively duplicated comparisons, fault
handling can be done in a purely computational approach. This approach is ideal
because an application no longer needs to have a secure response to a fault injection.



If either a block, B, or its respective redundant slice, B′, contain an error,
we would expect the XOR of them B ⊕ B′ to be nonzero. Whereas a non-faulty
operation would always produce zero. Building upon this, we can make a method
such that when a fault is injected, only a random number is output, foiling any
attempt of fault analysis.

After encryption, we can compute the following mask.

MASK = (−(B ⊕ B’) >> 128)

If B and B′ are the same, then B ⊕ B′ will be zero and the signed shift will
move in all zeros. If B ⊕B′ is nonzero, then the signed shift will move in all ones.
We can easily extend this mask to check a KC slice as well for instruction faults
using our known ciphertext KC ′.

MASK = (−(B ⊕ B’) >> 128) | (−(KC ⊕ KC’) >> 128)

As in our pipelined countermeasure, a redundant slice, data slice, and KC slice
can be shifted out every iteration to compute the mask. We can then use this mask
to protect our ciphertext block before it is output.

OUTPUT = (MASK & R) | (∼MASK & B);

By doing this, only our random number R will be output when a fault is de-
tected. Otherwise, the correct ciphertext B will be output. Because these compu-
tations are not covered by intra-instruction redundancy, they would have to be
duplicated using traditional approaches to protect from instruction faults. They
are a small part of the code, so they can easily be duplicated without significantly
increasing the footprint size. Computation faults need not be protected from as
they would either cause B⊕B′ or KC ⊕KC ′ to be nonzero or just flip bits in the
already computed ciphertext.

5 Security Analysis of the Proposed Countermeasures

In this section, we provide a security analysis for the proposed countermeasures in
Section 4 against the fault models defined in Section 2.

Similar to Guo et al. [13], we use the Fault Coverage (FC) to quantify the
security level of countermeasures. For a given countermeasure c and fault model f,
we compute the fault coverage using Equation 1. In our computations, we assume
that the adversary aims at injecting a computation or instruction skip fault into
the execution of a target round.

(FC)fc = 1 − Fundetected

Ftotal
(1)

In Equation 1, Ftotal is the total number of faults covered by the fault model
f. Fundetected is the number of faults that affect the execution of the target round
r, but cannot be detected by the given countermeasure c. More capable adver-
saries can increase the Fundetected, and reduce the Ftotal by accurately tuning fault
injection parameters. We list our FC computations in Table 1.



Table 1. Theoretical Security Analysis of the Proposed Countermeasures

Countermeasure
Computation Fault Models Instruction Fault Models

Random Word Random Byte Random Bit Chosen Bit Pair Instruction Skip

Unprotected AES 0% 0% 0% 0% 0%

IIR-AES ≈ 100% 94.90% 100% 51.61% 75%

Pipelined IIR-AES ≈ 100% 99.90% 100% 96.77% 99.90%

Shuffled Pipelined IIR-AES ≈ 100% 99.90% 100% 96.77% 99.90%

5.1 Security Analysis of Unprotected AES

In the unprotected, bit-sliced AES implementation, any computation or instruction
fault during the execution of the target round r will be useful for the adversary.
As there is no detection mechanism for this implementation, Ftotal and Fundetected

will be equal to each other. As a result, fault coverage will be 0 in any case. The
detailed explanations for each fault model are as follows.

In the Random Word fault model, the adversary has no control on the number
of faulty bits. The adversary can only create random faults in the target word
(32-bit). For each fault injection, the difference between the correct word and the
corresponding faulty word can have (232−1) different values. Therefore, Ftotal and
Fundetected are (232 − 1).

In the Random Byte fault model, an adversary can tune the fault injection to
randomly affect a single byte of the 32-bit data. This adversary can inject a fault
into one of the four bytes of the data. Each fault injection can create (28 − 1)
different faults in a byte. As a result, Ftotal and Fundetected are 4 × (28 − 1).

In the Random Bit fault model, the fault injection can be tuned to affect single
bit of the target word. Therefore, Ftotal and Fundetected are 32.

In the Chosen Bit Pair fault model, the adversary can inject faults into two
chosen, adjacent bits of the target word. Therefore, Ftotal and Fundetected are 31.

5.2 Security Analysis of IIR-AES

To thwart this countermeasure, the adversary needs to create the same effect on
the data slices and their corresponding redundant slices, without affecting any KC
slice. Affecting any combination of 15 data and redundant slice pairs will create
undetected faults. A Random Word fault can achieve this in

∑15
i=1

(
15
i

)
−
(
15
0

)
=

(215 − 1) different ways. Therefore, Fundetected is (215 − 1) and the FC (using Eq.
1) is 99.9992% (≈ 100%).

This countermeasure has three data and redundant slice pairs in the most
significant byte of the target word, while it has four pairs in each of the re-
maining bytes (Fig. 2). Thus, for Random Byte fault model, the Fundetected is
(23 − 1) + 3 × (24 − 1) = 52, and the FC is 94.90%.

As a Random Bit fault can manipulate only a single KC slice, data slice, or
redundant slice, the Fundetected is 0, and the FC is 100%.

As a Chosen Bit Pair fault can target a specific pair of data and redundant
slices, the Fundetected is 15, and the FC is 51.61%.

An Instruction skip fault will have the same effect on a data slice and its cor-
responding redundant slice. Thus, data and redundant slice pairs cannot detect an



instruction skip. Each KC slice has a 50% chance of detecting an instruction skip.
As we have 2 KC slices, the fault coverage is 1 − 1

22 = 75%.

5.3 Security Analysis of Pipelined IIR-AES

In this countermeasure, the 32-bit word consists of 10 KC, 10 redundant, 10 data,
and 2 spare slices (Fig. 3). Each data and redundant slice pair apply a different
round of AES on a different block. As there is only one data and redundant slice
pair running the target round r, the only way to obtain a useful and undetected
computation fault is by targeting this pair of slices.

For Random Word and Random Byte faults, the Fundetected is equal to 1. There-
fore the corresponding fault coverage for Random Word and Random Byte faults
are ≈ 100% and 99.90%, respectively.

As no Random Bit fault can bypass this countermeasure, the Fundetected is 0,
the fault coverage is 100%.

A Chosen Bit Pair fault can manipulate the data and redundant slice pair that
computes the target round r. The Fundetected is 1 and the fault coverage is 96.77%.

This countermeasure significantly increases the fault coverage against instruc-
tion skip attacks as we use 10 constant slices. The only undetected instruction skip
fault is the one that does not affect any of the constant bits. Therefore, the fault
coverage against instruction skip is 1 − 1

210 = 99.90%.

5.4 Security Analysis of Shuffled Pipelined IIR-AES

This countermeasure improves the security of the previous countermeasure by dy-
namically allocating the positions of the slices within a word. In this work, the slices
are rotated by a random number after each encryption. In this scheme, we have
32 different allocations. This reduces the chance of an attacker to inject a useful
and undetected fault 32 times because attacker’s chance of guessing the position of
the target round is 1/32. In addition, this countermeasure significantly reduces the
chance of an attacker from repeating the same fault on successive encryptions.

6 Results

In this section we will cover our performance, footprint, and experimental fault
coverage. We verified our results in a simulation of a 32 bit SPARC processor called
LEON3. We used Aeroflex Gaisler’s LEON3 CPU simulator, TSIM. To inject faults
and determine the coverage, we wrote a wrapper program 1 for Gaisler’s TSIM
simulator. The wrapper enabled us to use TSIM commands to inject faults into
any instruction, memory location, or register during the execution of the code.

6.1 Performance and Footprint

Our performance and footprint results are presented in Table 2. We wrote a bit-
sliced implementation of AES in C and benchmarked it without any fault attack

1 The wrapper program may be accessed on Github: https://github.com/Secure-
Embedded-Systems/tsim-fault



Table 2. Performance and footprint of multilevel countermeasure. Unprotected AES is
the reference bit-sliced implementation with no added countermeasure.

Performance Footprint

Unprotected AES 469.3 cycles/byte 5576 bytes

IIR-AES 1055.9 cycles/byte 6357 bytes
Overhead IIR-AES 2.25 1.14

Pipelined IIR-AES 1942.9 cycles/byte 5688 bytes
Overhead Pipelined IIR-AES 4.14 1.02

Shuffled Pipelined IIR-AES 1957 cycles/byte 6134 bytes
Overhead Shuffled Pipelined IIR-AES 4.17 1.10

Table 3. Experimental fault coverage averages for different fault injections. Every register
or instruction in the S-box stage in the last round was targeted one at a time per run for
fault injection.

Countermeasure
Computation Fault Models Instruction Fault Models

Random Word Random Byte Random Bit Chosen Bit Pair Instruction Skip

Unprotected AES 0.0% 0.0% 0.0% 0.0% 0.0%

IIR-AES 99.98% 91.45% 93.66% 53.96% 80.56%

Pipelined IIR-AES 100.0% 100.00% 100.0% 98.51% 98.6%

Shuffled Pipelined IIR-AES 100.0% 99.99% 100.0% 98.86% 98.6%

countermeasures added to it. We made three forks of our reference AES implemen-
tation and added each stage of our countermeasure to them 2. Performance was
measured by running AES in CTR mode and on a large input size. Footprint was
calculated by measuring the compiled program size. Overheads were calculated by
dividing by the corresponding reference bit-sliced AES metric.

Using Shuffled Pipelined IIR-AES will be about four times as slow as the ref-
erence implementation. Considering it can protect against side channels from the
most dangerous of fault attacks, it is a good compromise.

The original AES metric is slow compared to other works because it is an
unoptimized implementation. Other works have been able to get bit-sliced AES
implementations down to about 20 cycles/byte on 32 bit ARM [14]. We believe the
performance overhead for adding IIR would scale with the reference performance.

6.2 Experimental Fault Coverage

We ran fault simulations that emulated our considered adversaries. We injected
faults for every register or instruction used in the S-box step of the last round.
For data faults, our simulation would enumerate each register, injecting 1 fault,
then letting the program run to completion to check the resulting ciphertext. For
instruction skips, each instruction is similarly enumerated for skipping and checking
the resulting ciphertext.

The S-box step has 144 instructions, consisting of 18 memory operations and
126 computational operations. Of the 144 instructions, 404 operands were registers.
Each fault injection simulation was repeated 50 times and averaged together. For

2 Our implementations can be accessed on Github: https://github.com/Secure-
Embedded-Systems/fault-resistant-aes



each data fault simulation, 20,200 faults were injected. For each instruction skip
simulation, 7,200 faults were injected.

Table 3 shows the average fault coverages for each countermeasure. Most of
the experiments match closely with our theoretical fault coverages. IIR-AES has
slightly lower fault coverage then theorized for random bit and byte faults because
memory addresses stored in a register can change to a different but valid location,
resulting in a control fault. Because of this, the theoretical fault coverage for data
faults will be slightly averaged with the control fault coverage. Random bit and
byte coverage is slightly lower than expected and chosen bit pair is slightly higher
than expected for IIR-AES.

Instruction skip coverage in IIR-AES is 5.56% higher then expected, which is
likely just specific to the S-box and key constants we used.

7 Conclusion

We have introduced a set of novel and state of the art methods for detecting faults
in block ciphers. We use only software and introduce intra-instruction redundancy.
We can protect from well timed, repeatable faults. By adding pipelining, we make
our block cipher rounds spatial and much harder to target. And by finally applying
random rotations, we make it even more difficult to fault the target round more than
once. We show that the performance overhead of our countermeasure is acceptable
and scales depending on the desired security level. Our program size overhead
is considerably lightweight. We theoretically show why our countermeasure meets
the requirements for different fault models. We support our theoretical claims using
experimental simulation results based on Gaisler’s LEON3 simulator.

8 Acknowledgments

This research was supported in part by the National Science Foundation Grant
1441710, Semiconductor Research Corporation Task 2552.001, and Nation Science
Foundation CyberCorps Program.

References

1. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic
protocols for faults (extended abstract). In: Advances in Cryptology - EUROCRYPT
’97, International Conference on the Theory and Application of Cryptographic Tech-
niques, Konstanz, Germany, May 11-15, 1997, Proceeding. (1997) 37–51

2. Ali, S., hyay, D.M., Tunstall, M.: Differential fault analysis of AES: towards reaching
its limits. J. Cryptographic Engineering 3 (2013) 73–97

3. Lomné, V., Roche, T., Thillard, A.: On the need of randomness in fault attack
countermeasures - application to AES. In: 2012 Workshop on Fault Diagnosis and
Tolerance in Cryptography, Leuven, Belgium, September 9, 2012. (2012) 85–94

4. Barenghi, A., Breveglieri, L., Koren, I., Pelosi, G., Regazzoni, F.: Countermeasures
against fault attacks on software implemented AES: effectiveness and cost. In: Pro-
ceedings of the 5th Workshop on Embedded Systems Security, WESS 2010, Scottsdale,
AZ, USA, October 24, 2010. (2010) 7:1–7:10



5. Guo, X., Karri, R.: Invariance-based concurrent error detection for advanced encryp-
tion standard. In: The 49th Annual Design Automation Conference 2012, DAC ’12,
San Francisco, CA, USA, June 3-7, 2012. (2012) 573–578

6. Patranabis, S., Chakraborty, A., Mukhopadhyay, D., Chakrabarti, P.P.: Using state
space encoding to counter biased fault attacks on AES countermeasures. IACR Cryp-
tology ePrint Archive 2015 (2015) 806

7. Breier, J., Jap, D., Bhasin, S.: The other side of the coin: Analyzing software encod-
ing schemes against fault injection attacks. In: IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2016, Washington, DC, USA, 2016.
(2016)

8. Battistello, A., Giraud, C.: Fault analysis of infective AES computations. In: 2013
Workshop on Fault Diagnosis and Tolerance in Cryptography, Los Alamitos, CA,
USA, August 20, 2013. (2013) 101–107

9. Battistello, A., Giraud, C.: Lost in translation: Fault analysis of infective security
proofs. In: 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC
2015, Saint Malo, France, September 13, 2015. (2015) 45–53

10. Endo, S., Homma, N., Hayashi, Y.i., Takahashi, J., Fuji, H., Aoki, T.: A multiple-fault
injection attack by adaptive timing control under black-box conditions and a counter-
measure. In: Constructive Side-Channel Analysis and Secure Design: 5th International
Workshop, COSADE 2014, Paris, France, April 13-15, 2014. Revised Selected Papers.
Springer International Publishing, Cham (2014) 214–228

11. Ghalaty, N.F., Yuce, B., Taha, M., Schaumont, P.: Differential fault intensity analysis.
In: Fault Diagnosis and Tolerance in Cryptography (FDTC), 2014 Workshop on.
(2014) 49–58

12. Tunstall, M., Mukhopadhyay, D.: Differential fault analysis of the advanced encryp-
tion standard using a single fault. Cryptology ePrint Archive, Report 2009/575 (2009)
http://eprint.iacr.org/.

13. Guo, X., Mukhopadhyay, D., Karri, R.: Provably secure concurrent error detection
against differential fault analysis. Cryptology ePrint Archive, Report 2012/552 (2012)
http://eprint.iacr.org/.

14. Atasu, K., Breveglieri, L., Macchetti, M.: Efficient aes implementations for arm based
platforms. In: Proceedings of the 2004 ACM Symposium on Applied Computing. SAC
’04, New York, NY, USA, ACM (2004) 841–845


